John Poe
July 6, 2016
# When Count Models Go Bad: Zero Inflation
Load the data set policy and check it with head(policy)
## state id year citi_ideo gov_ideo_nom govparty_c policy
## 1 alabama 1 2004 39.1434 42.4537 0 0
## 2 alaska 2 2004 43.5494 31.2409 0 0
## 3 arizona 3 2004 47.7508 51.3161 1 0
## 4 arkansas 4 2004 52.6281 43.8843 0 0
## 5 california 5 2004 59.1004 49.1700 0 0
## 6 colorado 6 2004 54.6555 16.2838 0 1
## Loading required package: Matrix
##
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
## lmList
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00189097 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00189097 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 25) [glmerMod]
## Family: poisson ( log )
## Formula: policy ~ citi_ideo + gov_ideo_nom + govparty_c + (1 | id)
## Data: policy
##
## AIC BIC logLik deviance df.resid
## 446.2 465.5 -218.1 436.2 345
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4597 -0.7523 -0.4899 0.6148 4.2825
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.1003 0.3167
## Number of obs: 350, groups: id, 50
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.329030 0.337739 -6.896 5.35e-12 ***
## citi_ideo 0.038062 0.007127 5.341 9.26e-08 ***
## gov_ideo_nom -0.010572 0.006321 -1.673 0.09441 .
## govparty_c 0.767968 0.240927 3.188 0.00143 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) citi_d gv_d_n
## citi_ideo -0.778
## gov_ideo_nm 0.173 -0.700
## govparty_c -0.305 0.561 -0.794
## convergence code: 0
## Model failed to converge with max|grad| = 0.00189097 (tol = 0.001, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 25) [glmerMod]
## Family: Negative Binomial(0.26) ( log )
## Formula: policy ~ citi_ideo + gov_ideo_nom + govparty_c + (1 | id)
## Data: policy
##
## AIC BIC logLik deviance df.resid
## 164.6 187.8 -76.3 152.6 344
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.4916 -0.4243 -0.3556 0.2650 3.8743
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 6.764e-13 8.225e-07
## Number of obs: 350, groups: id, 50
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.37868 0.53408 -4.454 8.44e-06 ***
## citi_ideo 0.04180 0.01294 3.231 0.00123 **
## gov_ideo_nom -0.01326 0.01109 -1.195 0.23193
## govparty_c 0.80045 0.42298 1.892 0.05844 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) citi_d gv_d_n
## citi_ideo -0.803
## gov_ideo_nm 0.273 -0.746
## govparty_c -0.338 0.581 -0.809
Poisson | NB | |
State Ideology | 0.04*** | 0.04*** |
(0.01) | (0.01) | |
Government Ideology | -0.01* | -0.01 |
(0.01) | (0.01) | |
Partisan Control | 0.77*** | 0.80* |
(0.24) | (0.42) | |
Constant | -2.33*** | -2.38*** |
(0.34) | (0.53) | |
Observations | 350 | 350 |
Log Likelihood | -218.08 | -76.31 |
Akaike Inf. Crit. | 446.17 | 164.61 |
Bayesian Inf. Crit. | 465.46 | 187.76 |
Note: | p<0.1; p<0.05; p<0.01 |
FALSE $id
FALSE $id
## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
## Family: Negative Binomial(2.6051) ( log )
## Formula: policy ~ citi_ideo + gov_ideo_nom + govparty_c + (1 | id)
## Data: policy
##
## AIC BIC logLik deviance df.resid
## 827.7 850.8 -407.8 815.7 344
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1554 -0.7028 -0.4988 0.5022 4.6484
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.02513 0.1585
## Number of obs: 350, groups: id, 50
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.206576 0.311755 -7.078 1.46e-12 ***
## citi_ideo 0.037023 0.007195 5.146 2.66e-07 ***
## gov_ideo_nom -0.010845 0.006587 -1.646 0.09968 .
## govparty_c 0.747239 0.245741 3.041 0.00236 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) citi_d gv_d_n
## citi_ideo -0.763
## gov_ideo_nm 0.220 -0.751
## govparty_c -0.337 0.596 -0.799
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Negative Binomial(2.9593) ( log )
## Formula: policy ~ citi_ideo + gov_ideo_nom + govparty_c + (1 | id)
## Data: policy
##
## AIC BIC logLik deviance df.resid
## 827.6 850.7 -407.8 815.6 344
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1794 -0.7060 -0.4931 0.5361 4.6058
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.03648 0.191
## Number of obs: 350, groups: id, 50
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.236439 0.344309 -6.495 8.28e-11 ***
## citi_ideo 0.037261 0.007584 4.913 8.96e-07 ***
## gov_ideo_nom -0.010857 0.006610 -1.643 0.1005
## govparty_c 0.752291 0.249779 3.012 0.0026 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) citi_d gv_d_n
## citi_ideo -0.789
## gov_ideo_nm 0.246 -0.742
## govparty_c -0.368 0.606 -0.802
## convergence code: 0
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 25) [glmerMod]
## Family: Negative Binomial(0.26) ( log )
## Formula: policy ~ citi_ideo + gov_ideo_nom + govparty_c + (1 | id)
## Data: policy
##
## AIC BIC logLik deviance df.resid
## 164.6 187.8 -76.3 152.6 344
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.4916 -0.4243 -0.3556 0.2650 3.8743
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 6.764e-13 8.225e-07
## Number of obs: 350, groups: id, 50
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.37868 0.53408 -4.454 8.44e-06 ***
## citi_ideo 0.04180 0.01294 3.231 0.00123 **
## gov_ideo_nom -0.01326 0.01109 -1.195 0.23193
## govparty_c 0.80045 0.42298 1.892 0.05844 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) citi_d gv_d_n
## citi_ideo -0.803
## gov_ideo_nm 0.273 -0.746
## govparty_c -0.338 0.581 -0.809
PQL | Laplace | GHQ | |
State Ideology | 0.04*** | 0.04*** | 0.04*** |
(0.01) | (0.01) | (0.01) | |
Government Ideology | -0.01* | -0.01 | -0.01 |
(0.01) | (0.01) | (0.01) | |
Partisan Control | 0.75*** | 0.75*** | 0.80* |
(0.25) | (0.25) | (0.42) | |
Constant | -2.21*** | -2.24*** | -2.38*** |
(0.31) | (0.34) | (0.53) | |
Observations | 350 | 350 | 350 |
Log Likelihood | -407.83 | -407.78 | -76.31 |
Akaike Inf. Crit. | 827.66 | 827.55 | 164.61 |
Bayesian Inf. Crit. | 850.81 | 850.70 | 187.76 |
Note: | p<0.1; p<0.05; p<0.01 |